PRINCIPLES OF ANALYSIS LECTURE 12 - CAUCHY SEQUENCES

PAUL L. BAILEY

1. CAUCHY SEQUENCES

Let $\{s_n\}_{n=1}^{\infty}$ be a sequence of real numbers. We say that $\{s_n\}_{n=1}^{\infty}$ is a *Cauchy* sequence if

 $\forall \epsilon > 0 \; \exists N \in \mathbb{Z}^+ \; \ni \; m, n \ge N \Rightarrow |s_m - s_n| < \epsilon.$

Proposition 1. Let $\{s_n\}_{n=1}^{\infty}$ be a Cauchy sequence. Then $\{s_n\}_{n=1}^{\infty}$ is bounded.

Proof. Since $\{s_n\}_{n=1}^{\infty}$ is Cauchy, there exists $N \in \mathbb{Z}^+$ such that if $m, n \geq N$, then $|s_m - s_n| < 1$. In particular, for every $n \geq N$, we have $|s_n - s_N| < 1$. Set

$$M = \max\{s_1, s_2, \dots, s_{N-1}, s_N + 1\}.$$

Then $s_n \in [-M, M]$ for every $n \in \mathbb{Z}^+$.

Proposition 2. Let $\{s_n\}_{n=1}^{\infty}$ be a sequence of real numbers. Then $\{s_n\}_{n=1}^{\infty}$ is convergent if and only if it is a Cauchy sequence.

Proof. We prove each direction of the double implication.

 (\Rightarrow) Assume that the sequence is convergent. Let $\epsilon > 0$, and set $s = \lim s_n$. Then there exists $N \in \mathbb{Z}^+$ such that if $n \ge N$, then $|s_n - s| < \epsilon/2$. Then for $m, n \ge N$, we have

$$|s_m - s_n| = |s_m - s + s - s_n|$$
$$= |s_m - s| + |s_n - s|$$
$$\leq \frac{\epsilon}{2} + \frac{\epsilon}{2}$$
$$= \epsilon.$$

 (\Leftarrow) Assume that the sequence is a Cauchy sequence. Then it is bounded, and so its limit superior and inferior exist as real numbers. By a previous proposition, it suffices to show that $\liminf s_n = \limsup s_n$.

Let $\epsilon > 0$. Then there exists $N \in \mathbb{Z}^+$ such that if $m, n \ge N$, then $|s_m - s_n| < \epsilon$. In particular, $|s_n - s_N| < \frac{\epsilon}{2}$ for all $n \ge N$, so $s_N + \frac{\epsilon}{2}$ is an upper bound for $\{s_n \mid n \ge N\}$. Thus $\sup\{s_n \mid n \ge N\} \le s_N + \frac{\epsilon}{2}$, and therefore $\limsup s_n \le s_N + \frac{\epsilon}{2}$. Similarly $\liminf s_n \ge s_N - \frac{\epsilon}{2}$. Rearranging these inequalities gives

$$\limsup s_n - \frac{\epsilon}{2} \le s_N \le \liminf s_n + \frac{\epsilon}{2},$$

or

 $\limsup s_n - \liminf s_m < \epsilon.$

Since ϵ is arbitrary, we have $\limsup s_n = \liminf s_n$.

Date: September 29, 2003.

2. Subsequences

Let $s : \mathbb{Z}^+ \to \mathbb{R}$ be a sequence of real numbers. A subsequence of s is the composition $s \circ n$ of s with a strictly increasing sequence $n : \mathbb{Z}^+ \to \mathbb{Z}^+$ of positive integers.

If we denote the sequence s by $\{s_n\}_{n=1}^{\infty}$ and the sequence n by $\{n_k\}_{k=1}^{\infty}$, then we denote the subsequence by $\{s_{n_k}\}_{k=1}^{\infty}$. Note that since the function $n: \mathbb{Z}^+ \to \mathbb{Z}^+$ is strictly increasing, it is injective.

Note that since the function $n : \mathbb{Z}^+ \to \mathbb{Z}^+$ is strictly increasing, it is injective. Thus if $N \in \mathbb{Z}^+$, there exists $k \in \mathbb{Z}^+$ such that $n_k \ge N$; otherwise, we would have an injective function from an infinite set into the finite set $\{m \in \mathbb{Z}^+ \mid m < N\}$.

Proposition 3. Let $\{s_n\}_{n=1}^{\infty}$ be a sequence of real numbers and let $s \in \mathbb{R}$. Then $\{s_n\}_{n=1}^{\infty}$ converges to s if and only if every subsequence of $\{s_n\}_{n=1}^{\infty}$ converges to s.

Proof. We prove both directions.

 (\Leftarrow) Note that a sequence is a subsequence of itself. Thus if every subsequence of $\{s_n\}_{n=1}^{\infty}$ converges to s, then in particular the sequence itself converges to s.

(⇒) Suppose that $\lim s_n = s$. Let $\{s_{n_k}\}$ be a subsequence of $\{s_n\}_{n=1}^{\infty}$, and let $\epsilon > 0$. Then there exists $N \in \mathbb{Z}^+$ such that if $n \ge N$, then $|s_n - s| < \epsilon$. We know that there exists $K \in \mathbb{Z}^+$ such that $n_K \ge N$; moreover, since $\{n_k\}$ is strictly increasing, if $k \ge K$, then $n_k \ge n_K \ge N$. Therefore, for $k \ge K$, we have $|s_{n_k} - s| < \epsilon$. \Box

Proposition 4. Let $\{s_n\}_{n=1}^{\infty}$ be a sequence of real numbers. Then $\{s_n\}_{n=1}^{\infty}$ has a monotonic subsequence.

Proof. Say that the i^{th} term of $\{s_n\}_{n=1}^{\infty}$ is *dominant* if $s_j < s_i$ for every j > i. *Case 1:* There are infinitely many dominant terms. In this case, set

 $n_1 = \min\{n \in \mathbb{Z}^+ \mid s_n \text{ is dominant}\}.$

Then recursively set

 $n_{k+1} = \min\{n \in \mathbb{Z}^+ \mid s_n \text{ is dominant and } n > n_k\};$

this set is nonempty by the hypothesis of this case. Then $\{s_{n_k}\}$ is a decreasing sequence.

Case 2: There are finitely many dominant terms. In this case, set

 $n_0 = max\{n \in \mathbb{Z}^+ \mid s_n \text{ is dominant}\}.$

Then recursively set

$$n_{k+1} = \min\{n \in \mathbb{Z}^+ \mid s_n > s_{n_k} \text{ and } n > n_k\};\$$

this set is nonempty because s_{n_0} was the last dominant term. Now $\{s_{n_k}\}$ is an increasing sequence.

Corollary 1. Every bounded sequence of real numbers has a convergent subsequence.

Proof. It is clear that if a sequence is bounded, then every subsequence is also bounded. Thus a bounded sequence has a bounded monotonic subsequence, which must converge. \Box

Let $\{s_n\}_{n=1}^{\infty}$ be a sequence of real numbers, and let $c \in \mathbb{R}$. We say that c is a *cluster point* of $\{s_n\}_{n=1}^{\infty}$ if

$$\forall \epsilon > 0 \; \forall N \in \mathbb{Z}^+ \; \exists n \ge N \; \ni \; |s_n - c| < \epsilon.$$

We say that c is a subsequential limit of $\{s_n\}_{n=1}^{\infty}$ if there exists a subsequence $\{s_{n_k}\}_{k=1}^{\infty}$ such that $\lim_{k\to\infty} s_{n_k} = c$.

Proposition 5. Let $\{s_n\}_{n=1}^{\infty}$ be a sequence of real numbers, and let $c \in \mathbb{R}$. Then c is a cluster point if and only if c is a subsequential limit.

Proof. Exercise.

4. Neighborhoods

Let $x_0 \in \mathbb{R}$. An ϵ -neighborhood of x_0 is an open interval of the form $(x_0 - \epsilon, x_0 + \epsilon)$, where $\epsilon > 0$.

More generally, a *neighborhood* of x_0 is a subset $Q \subset \mathbb{R}$ such that there exists $\epsilon > 0$ with $(x_0 - \epsilon, x_0 + \epsilon) \subset Q$.

A deleted neighborhood of x_0 is a set of the form $Q \setminus \{x_0\}$, where Q is a neighborhood of x_0 .

Proposition 6. Let $\{s_n\}_{n=1}^{\infty}$ be a sequence of real numbers, and let $s \in \mathbb{R}$. Then s is the limit of $\{s_n\}_{n=1}^{\infty}$ if and only if every neighborhood of s contains s_n for all but finitely many n.

Proof. Gaughan page 35 Lemma.

Proposition 7. Let $\{s_n\}_{n=1}^{\infty}$ be a sequence of real numbers, and let $c \in \mathbb{R}$. Then c is a cluster point of $\{s_n\}_{n=1}^{\infty}$ if and only if every neighborhood of c contains s_n for infinitely many n.

Proof. Exercise.

Department of Mathematics and CSCI, Southern Arkansas University $E\text{-}mail \ address: plbailey@saumag.edu$