PRINCIPLES OF ANALYSIS
LECTURE 12 - CAUCHY SEQUENCES

PAUL L. BAILEY

1. CAUCHY SEQUENCES

Let {s,}22; be a sequence of real numbers. We say that {s,}5; is a Cauchy
sequence if
Ve>03IN €Z" 2 mn> N =|s, —sn| <e

Proposition 1. Let {s,}>2; be a Cauchy sequence. Then {s,}°2; is bounded.

Proof. Since {s,}5; is Cauchy, there exists N € Z* such that if m,n > N,

then |s,, — s,| < 1. In particular, for every n > N, we have |s, — sy| < 1. Set
M = max{s1,82,...,8n-1,Sn + 1}.

Then s, € [-M, M] for every n € Z+. O

Proposition 2. Let {s,}22, be a sequence of real numbers. Then {s,}52 4 is
convergent if and only if it is a Cauchy sequence.

Proof. We prove each direction of the double implication.

(=) Assume that the sequence is convergent. Let € > 0, and set s = lim s,,.
Then there exists N € Z* such that if n > N, then |s,, — s| < €¢/2. Then for
m,n > N, we have

[$m — S|l = [$m — S+ 8 — 8y

[$m — 8| + |sn — |
e+e

2 2

€.
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(<) Assume that the sequence is a Cauchy sequence. Then it is bounded, and
so its limit superior and inferior exist as real numbers. By a previous proposition,
it suffices to show that liminf s,, = limsups,,.

Let € > 0. Then there exists N € Z* such that if m,n > N, then |s,, —s,| < €.
In particular, |s,, —sy| < § for all n > N, so sy + § is an upper bound for {s,, |
n > N}. Thus sup{s, | n > N} < sy + 5, and therefore limsup s, < sy + §.
Similarly liminf s, > sy — 5. Rearranging these inequalities gives

. € .. €
limsup s, — 5 < sy <liminfs, + 5
or

limsup s, — liminf s, < €.

Since € is arbitrary, we have limsup s,, = liminf s,,. O
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2. SUBSEQUENCES

Let s : ZT — R be a sequence of real numbers. A subsequence of s is the
composition s o n of s with a strictly increasing sequence n : Z* — ZT of
positive integers.

If we denote the sequence s by {s,,}>2; and the sequence n by {ng}3>,, then
we denote the subsequence by {s,, }?2 ;.

Note that since the function n : Zt — Z7 is strictly increasing, it is injective.
Thus if N € Z™, there exists k € Z* such that ny > N; otherwise, we would have
an injective function from an infinite set into the finite set {m € Z* | m < N}.

Proposition 3. Let {s,}52 be a sequence of real numbers and let s € R. Then
{8n}52, converges to s if and only if every subsequence of {s,}2, converges to
s.

Proof. We prove both directions.

(<) Note that a sequence is a subsequence of itself. Thus if every subsequence
of {s,}52; converges to s, then in particular the sequence itself converges to s.

(=) Suppose that lims, = s. Let {s,,} be a subsequence of {s,}5,, and
let € > 0. Then there exists N € Z* such that if n > N, then |s,, — s| < e.
We know that there exists K € Z™T such that nx > N; moreover, since {n} is
strictly increasing, if K > K, then ny > nx > N. Therefore, for £k > K, we have
|sn, —s| <e. O

Proposition 4. Let {s,}52, be a sequence of real numbers. Then {s,}22, has
a monotonic subsequence.

Proof. Say that the i*® term of {s,}5°, is dominant if s; < s; for every j > i.
Case 1: There are infinitely many dominant terms. In this case, set

n1 =min{n € Z* | s,, is dominant}.
Then recursively set
ngy1 = min{n € Z* | s,, is dominant and n > ny};

this set is nonempty by the hypothesis of this case. Then {s,, } is a decreasing
sequence.
Case 2: There are finitely many dominant terms. In this case, set

no = max{n € Z* | s,, is dominant}.
Then recursively set
nk+1 = min{n € Z* | 8, > sp, and n > ny};

this set is nonempty because s,, was the last dominant term. Now {s,, } is an
increasing sequence. O

Corollary 1. FEvery bounded sequence of real numbers has a convergent subse-
quence.

Proof. Tt is clear that if a sequence is bounded, then every subsequence is also
bounded. Thus a bounded sequence has a bounded monotonic subsequence,
which must converge. O



3. CLUSTER POINTS AND SUBSEQUENTIAL LIMITS

Let {s,}52, be a sequence of real numbers, and let ¢ € R.
We say that c is a cluster point of {s,}22 if

Ve >0VN€Z"3In>N > |s, —c| <e

We say that c is a subsequential limit of {s,};2; if there exists a subsequence
{Snk}gozl such that hmk_,oo Sny = C.

Proposition 5. Let {s,}52, be a sequence of real numbers, and let ¢ € R. Then
c is a cluster point if and only if ¢ is a subsequential limit.

Proof. Exercise. U

4. NEIGHBORHOODS

Let 9 € R. An e-neighborhood of x is an open interval of the form (z¢ —
€, o + €), where € > 0.

More generally, a neighborhood of z( is a subset @) C R such that there exists
€ >0 with (zg —€,z9 + €) C Q.

A deleted neighborhood of xg is a set of the form @ ~ {zo}, where @ is a
neighborhood of .

Proposition 6. Let {s,}>2 ; be a sequence of real numbers, and let s € R. Then
s is the limit of {s,}22, if and only if every neighborhood of s contains s, for
all but finitely many n.

Proof. Gaughan page 35 Lemma. (]

Proposition 7. Let {s,,}>2; be a sequence of real numbers, and let c € R. Then
¢ is a cluster point of {s,}52 1 if and only if every neighborhood of ¢ contains sy,
for infinitely many n.

Proof. Exercise. O
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