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1. Cauchy Sequences

Let {sn}∞n=1 be a sequence of real numbers. We say that {sn}∞n=1 is a Cauchy
sequence if

∀ε > 0 ∃N ∈ Z+ 3 m,n ≥ N ⇒ |sm − sn| < ε.

Proposition 1. Let {sn}∞n=1 be a Cauchy sequence. Then {sn}∞n=1 is bounded.

Proof. Since {sn}∞n=1 is Cauchy, there exists N ∈ Z+ such that if m,n ≥ N ,
then |sm − sn| < 1. In particular, for every n ≥ N , we have |sn − sN | < 1. Set

M = max{s1, s2, . . . , sN−1, sN + 1}.
Then sn ∈ [−M,M ] for every n ∈ Z+. �

Proposition 2. Let {sn}∞n=1 be a sequence of real numbers. Then {sn}∞n=1 is
convergent if and only if it is a Cauchy sequence.

Proof. We prove each direction of the double implication.
(⇒) Assume that the sequence is convergent. Let ε > 0, and set s = lim sn.

Then there exists N ∈ Z+ such that if n ≥ N , then |sn − s| < ε/2. Then for
m,n ≥ N , we have

|sm − sn| = |sm − s + s− sn|
= |sm − s|+ |sn − s|

≤ ε

2
+

ε

2
= ε.

(⇐) Assume that the sequence is a Cauchy sequence. Then it is bounded, and
so its limit superior and inferior exist as real numbers. By a previous proposition,
it suffices to show that lim inf sn = limsupsn.

Let ε > 0. Then there exists N ∈ Z+ such that if m,n ≥ N , then |sm−sn| < ε.
In particular, |sn− sN | < ε

2 for all n ≥ N , so sN + ε
2 is an upper bound for {sn |

n ≥ N}. Thus sup{sn | n ≥ N} ≤ sN + ε
2 , and therefore lim sup sn ≤ sN + ε

2 .
Similarly lim inf sn ≥ sN − ε

2 . Rearranging these inequalities gives

lim sup sn −
ε

2
≤ sN ≤ lim inf sn +

ε

2
,

or
lim sup sn − lim inf sm < ε.

Since ε is arbitrary, we have lim sup sn = lim inf sn. �
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2. Subsequences

Let s : Z+ → R be a sequence of real numbers. A subsequence of s is the
composition s ◦ n of s with a strictly increasing sequence n : Z+ → Z+ of
positive integers.

If we denote the sequence s by {sn}∞n=1 and the sequence n by {nk}∞k=1, then
we denote the subsequence by {snk

}∞k=1.
Note that since the function n : Z+ → Z+ is strictly increasing, it is injective.

Thus if N ∈ Z+, there exists k ∈ Z+ such that nk ≥ N ; otherwise, we would have
an injective function from an infinite set into the finite set {m ∈ Z+ | m < N}.

Proposition 3. Let {sn}∞n=1 be a sequence of real numbers and let s ∈ R. Then
{sn}∞n=1 converges to s if and only if every subsequence of {sn}∞n=1 converges to
s.

Proof. We prove both directions.
(⇐) Note that a sequence is a subsequence of itself. Thus if every subsequence

of {sn}∞n=1 converges to s, then in particular the sequence itself converges to s.
(⇒) Suppose that lim sn = s. Let {snk

} be a subsequence of {sn}∞n=1, and
let ε > 0. Then there exists N ∈ Z+ such that if n ≥ N , then |sn − s| < ε.
We know that there exists K ∈ Z+ such that nK ≥ N ; moreover, since {nk} is
strictly increasing, if k ≥ K, then nk ≥ nK ≥ N . Therefore, for k ≥ K, we have
|snk

− s| < ε. �

Proposition 4. Let {sn}∞n=1 be a sequence of real numbers. Then {sn}∞n=1 has
a monotonic subsequence.

Proof. Say that the ith term of {sn}∞n=1 is dominant if sj < si for every j > i.
Case 1: There are infinitely many dominant terms. In this case, set

n1 = min{n ∈ Z+ | sn is dominant}.
Then recursively set

nk+1 = min{n ∈ Z+ | sn is dominant and n > nk};
this set is nonempty by the hypothesis of this case. Then {snk

} is a decreasing
sequence.

Case 2: There are finitely many dominant terms. In this case, set

n0 = max{n ∈ Z+ | sn is dominant}.
Then recursively set

nk+1 = min{n ∈ Z+ | sn > snk
and n > nk};

this set is nonempty because sn0 was the last dominant term. Now {snk
} is an

increasing sequence. �

Corollary 1. Every bounded sequence of real numbers has a convergent subse-
quence.

Proof. It is clear that if a sequence is bounded, then every subsequence is also
bounded. Thus a bounded sequence has a bounded monotonic subsequence,
which must converge. �
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3. Cluster Points and Subsequential Limits

Let {sn}∞n=1 be a sequence of real numbers, and let c ∈ R.
We say that c is a cluster point of {sn}∞n=1 if

∀ε > 0 ∀N ∈ Z+ ∃n ≥ N 3 |sn − c| < ε.

We say that c is a subsequential limit of {sn}∞n=1 if there exists a subsequence
{snk

}∞k=1 such that limk→∞ snk
= c.

Proposition 5. Let {sn}∞n=1 be a sequence of real numbers, and let c ∈ R. Then
c is a cluster point if and only if c is a subsequential limit.

Proof. Exercise. �

4. Neighborhoods

Let x0 ∈ R. An ε-neighborhood of x0 is an open interval of the form (x0 −
ε, x0 + ε), where ε > 0.

More generally, a neighborhood of x0 is a subset Q ⊂ R such that there exists
ε > 0 with (x0 − ε, x0 + ε) ⊂ Q.

A deleted neighborhood of x0 is a set of the form Q r {x0}, where Q is a
neighborhood of x0.

Proposition 6. Let {sn}∞n=1 be a sequence of real numbers, and let s ∈ R. Then
s is the limit of {sn}∞n=1 if and only if every neighborhood of s contains sn for
all but finitely many n.

Proof. Gaughan page 35 Lemma. �

Proposition 7. Let {sn}∞n=1 be a sequence of real numbers, and let c ∈ R. Then
c is a cluster point of {sn}∞n=1 if and only if every neighborhood of c contains sn

for infinitely many n.

Proof. Exercise. �
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